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Three-dimensional lattice-Boltzmann model of van der Waals fluids
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A three-dimensional lattice-Boltzmann model is developed for the simulation of nonideal fluids under static
and flow conditions. The van der Waals formulation of quasilocal thermodynamics for nonuniform fluids is
used, and the interfacial stress tensor for nonideal fluids appears explicitly in the hydrodynamic equations. The
continuity and flow equations are fully recovered, and Galilean invariance is restored through appropriate
manipulations of the pressure tensor. Although applied here to the D3Q15 lattice, the methodology of Galilean
restoration can be easily modified for use with other three-dimensional lattices as well. The Laplace law and
Gibbs-Thomson equations are satisfied with excellent accuracy by the model, as demonstrated by droplet
equilibrium simulations. Spinodal decomposition and droplet coalescence simulations are also carried out,
revealing a direct proportionality of the characteristic times to the viscosity, as expected. A wettability adjust-
ment was made possible through the prescription of a chemical potential profile along the fluid-wall interface,
and used for the simulation of droplet formation from a conical orifice.
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I. INTRODUCTION

In a recent publication@1#, the authors presented a lattic
Boltzmann~LB! approach for the modeling of vapor-liqui
equilibrium and the flow of a van der Waals fluid. The inte
facial phenomena of this nonideal system are captured u
the free-energy approach, originally introduced in the cont
of LB schemes by Swift and co-workers@2,3#. A methodol-
ogy for the prescription of the fluid properties in the conte
of such an approach was presented by Angelopouloset al.
@4#. The thermodynamic aspects of this model follow the v
der Waals mean-field theory for nonuniform fluids@5,6#. Al-
though the model was shown to be capable of simula
two-phase flow problems@4#, the lack of Galilean invariance
could lead to a reduced accuracy in the calculation of
flow field, in transient or steady-state flow simulations.

The main theoretical advance in our recent work@1# was
the restoration of Galilean invariance and the concomit
recovery of the actual Navier-Stokes equation, using the t
dimensional ~2D! seven-speed model. Validation of th
model was implemented under static conditions, and its
formance in droplet formation and flow simulations was
vestigated. A similar concept for Galilean invariance resto
tion was used by Holdychet al. @7# in an older publication in
the 2D nine-speed model.

In the present work, a 3D lattice-Boltzmann model
nonideal fluids is developed and tested. The model is
extension of our previous 2D model to three dimensions,
uses a cubic lattice with 15 velocity vectors per cell. The v
der Waals theory for nonuniform fluids is used, and a rig
ous method for restoring Galilean invariance is presen
The practical need for this work arises form the large num
of technological applications that involve interfacial ph
nomena under static or flow conditions. Although a varie
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of computational fluid dynamics~CFD! techniques have
been developed for the solution of the Navier-Stokes eq
tion in single and multiphase flow problems, the LB a
proach holds strong promise as an alternative numerical
cedure on the grounds of several distinct features. A g
advantage of LB models is that they can easily simulate fl
with highly complicated solid or free boundaries. Especia
in multiphase flow cases, LB models do not need interfa
tracking algorithms—unlike conventional CFD codes—a
the motion and evolution of deformable bodies, includi
coalescence and breakup phenomena, are simulated
straightforward fashion. A practical advantage is that L
coding is far easier than algorithms that solve the flow eq
tion. Furthermore, LB models lend themselves naturally
parallel coding, thus taking advantage of the rapid progr
in the multiprocessor computer technology that is enjoy
nowadays. Although significant progress is still to be ma
with thermal LB models and with high density ratio for two
phase systems, currently available two-phase flow LB
proaches can provide a very useful framework for the und
standing and simulation of flow phenomena that develop
classical fluid mechanics problems with and without so
boundaries~e.g., porous media!. A comprehensive review o
LB methods focusing on two-phase flow modeling, accura
applications, and current restrictions is provided by H´zi
et al. @8#.

Recently, some other two-phase LB models have b
extended to three dimensions using either the interacting
tential approach@9,10# or the free-energy approach@11,12#
proposed by Swiftet al. @3#. The 3D model developed here
used to simulate droplet equilibrium, droplet coalescen
and vapor-liquid flow including droplet motion and deform
tion. This paper is organized as follows: Section II presen
3D two-phase model, along with the necessary correcti
made for Galilean invariance restoration. In Sec. III, the
sults of the application of the model to static and flow pro
lems are presented, and the significance of restoring Gali
©2003 The American Physical Society02-1
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invariance is demonstrated. The main conclusions of
work are summarized in Sec. IV.

II. LATTICE-BOLTZMANN TWO-PHASE MODEL
IN THREE DIMENSIONS

A. Model development

In this section the development of a three-dimensio
lattice-Boltzmann model of nonideal fluids is presente
Single-particle distribution functionsf i , discrete in both
time and space, are used within a particle population
semble. The particle populations reside only on the node
the lattice and move along a well-defined set of unit vect
(eI i), corresponding to the directions~indicated by the sub-
script i! of the neighboring nodes. The ensemble evolv
according to the lattice-Boltzmann equation, simplified w
the use of the single time relaxation approach, introduced
Bhatnagar, Gross, and Krook@13#:

f ki~xI 1eI kiDt,t1Dt !2 f ki~xI ,t !52
1

t
@ f ki~xI ,t !2 f ki

eq~xI ,t !#.

~1!

In Eq. ~1! f ki
eq(xI ,t) is the equilibrium distribution function,t

is the single relaxation time which controls the rate of a
proach to equilibrium,Dt is the time step, andxI is the posi-
tion vector. Subscriptk is used to classify the particle popu
lation into subpopulations, according to their speed (ueI kiu),
namely,k50 for the rest particles andk.1 for the mobile
ones. The distribution functionf ki(xI ,t) represents the prob
ability of finding a particle at nodexI and timet with velocity
eI ki . In the present work the three-dimensional fcc lattice
employed, and 14 distinct directions of particle propagat
at each time step are used (D3Q15) ~Fig. 1!. This model has
the required underlying symmetry to restore the correct m

FIG. 1. Lattice geometry and unit paths assumed in theD3Q15

model.
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roscopic equations of fluid motion@14,15#. There are two
types of moving populations: populations of type 1 (k51)
move along the principal axes (ueI 1i u51, i 51,6) and popula-
tions of type 2 (k52) move along the eight diagona
(ueI 2i u5), i 57,14). Rest particle populations with zer
speed (k50) are also allowed (ueI 0u50).

The local densityr and velocityuI are obtained from the
first two moments of the distribution function:

r5(
k,i

f ki , ruI 5(
k,i

eI i f ki . ~2!

The equilibrium distribution functionf ki
eq is expanded as a

power series of the local velocityuI , up to second order, in
which additional nonlocal terms are included to allow t
prescription of the properties of a nonideal fluid@2#:

f ki
eq5Ak1Bk~eI ki•uI !1Ck~eI ki•uI !21Dku

2

1G= k :eI kieI ki1O~u3!. ~3!

The coefficients are determined from the local conser
tion rules for mass and momentum,

r5(
k,i

f ki
eq, ruI 5(

k,i
eI ki f ki

eq, ~4!

the constraints of isotropy and Galilean invariance, the
quirement that the pressure tensor be independent of the
locity, and from the zero order momentum flux tensor (P= (0))
for nonideal fluids,

Pab
~0![(

k
(

i
ekiaekib f i

eq5Pab1ruaub , ~5!

wherePab is the pressure tensor.
The pressure tensor for inhomogeneous fluids is@16#

Pab~rI !5P~rI !dab1k¹ar¹br. ~6!

Following the van der Waals quasi-thermodynamic the
of nonuniform fluids@5# and the Cahn-Hilliard approach@6#,
the diagonal terms of the pressure tensor are related to
free energy through

P~rI !5rS dC

dr D
T

2C5p02kr¹2r2
k

2
u¹ru2, ~7!

wherep0 is the pressure of the fluid which is connected
the density through the equation of state:

p05r
]c~r!

]r
2c~r!, ~8!

C(rI ) is the free energy functional according to the squa
gradient approximation,

C~rI !5E F1

2
mu¹r~rI !u21c@r~rI !#Gdr, ~9!

andc(r(rI )) is the local free-energy density of the fluid.
2-2
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The following velocity vectors are used with theD3Q15
model:

eI 050I , eI 1i5cycl~61,0,0! for i 51 . . . 6

and

eI 2i5)~61,61,61! for i 57 . . . 14,

which satisfy the identities

(
i

ekia5(
i

ekiaekibekig50,

(
i

ekiaekib5
bck

2

D
dab5H 2dab , k51

8dab , k52
, ~10!

(
i

ekiaekibekigekid5
bck

4

D~D12!
Dabgd5H 2dabgd , k51

8dabgd , k52,

Dabgd5dabdgd1dagdbd1daddbg.

In the above, the greek subscripts represent the macrosc
x, y, andz coordinates, andc151, andc25).

Using constraints~4! and~5! and Eqs.~10! the expansion
coefficients are determined as

A05r2

7S p02kr¹2r2
1

6
ku¹I ru2D

3
5r27A1 ,

A15

p02kr¹2r2
1

6
ku¹I ru2

3
,

A25

p02kr¹2r2
1

6
ku¹I ru2

24
5

A1

8
,

B050, B15r/3, B25r/24,

C050, C15r/2, C25r/16,

D052r/3, D152r/6, D252r/48, ~11!

G1xx5
k

6 F2S ]r

]xD 2

2S ]r

]yD 2

2S ]r

]zD 2G ,
G1yy5

k

6 F2S ]r

]xD 2

12S ]r

]yD 2

2S ]r

]zD 2G ,
G1zz5

k

6 F2S ]r

]xD 2

2S ]r

]yD 2

12S ]r

]zD 2G ,
G1xz5

k

2

]r

]x

]r

]z
, G1xy5

k

2

]r

]x

]r

]y
, G1yz5

k

2

]r

]x

]r

]z
,

01670
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G2xx5
G1xx

8
, G2yy5

G1yy

8
G2zz5

G1zz

8
,

G2xy5
G1xy

8
, G2xz5

G1xz

8
G2yz5

G1yz

8
.

Application of the Chapman-Enskog approach to the latti
Boltzmann equation eventually results in the macrosco
mass and momentum conservation equations:

~a! mass conservation equation:

]

]t
r1¹•ruI 50, ~12!

~b! momentum conservation equation:

]

]t
~ruI !1¹•~ruu!

52¹P= 1¹F S 2t21

6 D r$¹uI 1~¹uI !T%G
1¹F S t2

1

2D S 1

3
2

]P

]r D r~¹•uI !G1¹F S 2t21

6 D
3S 12

1

3

]P

]r D $uI ¹r1~uI ¹r!T%G1¹F S t2
1

2D
3S 1

3
2

]P

]r D ~uI •¹r!G1O~u3!. ~13!

The kinematic viscosity~n! and the bulk viscosity~k! are
given by the following expressions, respectively:

n5
2t21

6
,

k

r
5nS 5

3
23

]P

]r D . ~14!

The momentum conservation equation@Eq. ~13!# contains
two density gradient-dependent terms on the right-hand
that do not appear in the exact momentum equation. T
discrepancy is eliminated in Sec. III, and Galilean invarian
is restored. Another significant difference of Eq.~13! and the
macroscopic momentum equation is the form of the grad
of the pressure tensor. According to its explicit express
given in Eq.~6!, it is easy to show that the pressure tens
divergence is made up of two terms: the pressure tenso
the nonideal fluid and the stress tensor that accounts for
interfacial tension effects,

¹•P= 5¹p02¹•P= ~s!, ~15!

where

P= ~s!5S kr¹2r1
k

2
u¹ru2D d

=
2k¹r¹r. ~16!
2-3
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The use of the interfacial stress tensorP= (s) in the momentum
equation@17# was also confirmed by Zou and He@18# using
kinetic theory arguments in their discrete Boltzmann eq
tion approach.

B. Restoration of Galilean invariance

The appearance of the last two terms in the momen
equation is physically incorrect and may be responsible
the lack of Galilean invariance of the 3D LB model deve
oped here. In order to recover the correct macroscopic
mentum equation, these two terms must be eliminated. T
can be achieved through a procedure that is similar to
developed by the authors in the 2D LB case@1#, and consists
of the appropriate incorporation of the density gradient ter
into the pressure tensor. The pressure tensor can assum
following general form:

(
k,i

f ki
eqekiaekib5Pab8 1ruaub5FPab1z~ub]ar1ua]br!

1j(
g

ug]grdabG1ruaub. ~17!

In the above equation, an index notation has been u
The symbol]a denotes spatial derivatives, and greek su
scripts represent the macroscopicx, y, and z coordinates.
Following algebraic manipulations, it can be shown that
correct momentum equation is recovered if

z5j5n85nS 123
]P

]r D . ~18!

Substituting the equilibrium distribution expansion@Eq.
~3!# and the pressure tensor form@Eq. ~6!# in Eq. ~17!, the
coefficients of the equilibrium distribution function for th
Galilean invariant model are obtained~primed quantities!:

A185A11
5

9
n8(

g
ug]gr,

A285A21
5

72
n8(

g
ug]gr5

A18

8
,

A085A02
35

9
n8(

g
ug]gr5r27A18 ,

B185B1 , B285B2 ,

C185C1 , C285C2 ,
~19!

D085D0 , D185D1 , D285D2 ,

G1aa8 5G1aa1
n8

2 S 2ua]ar2
2

3 (
g

ug]gr D ,

G2aa8 5G2aa1
n8

16S 2ua]ar2
2

3 (
g

ug]gr D 5
G1aa8

8
,
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G1ab8 5G1ab1
n8

2
~ub]ar1ua]br!,

G2ab8 5G2ab1
n8

16
~ub]ar1ua]br!5

G1ab8

8
.

III. RESULTS AND DISCUSSION

A validation of the model through comparison of simul
tion results to theoretical predictions is presented first. A l
uid droplet in equilibrium with its surrounding vapor is simu
lated under static conditions and the pressure differe
across the interface is calculated for various droplet siz
The parameter valuesn l5ng51.6731022, m51.831023,
andr l52, rg51 are prescribed in a self-consistent way a
cording to the algorithm proposed by Angelopouloset al.
@4#, and are expressed in dimensionless form~‘‘lattice Bolt-
zmann units’’!. The basic reference quantities are the dens
of a unit cell, r̃0 , the speed of type-I particles,ẽ0 , and the
lattice constant,l̃ 0 , for the fluid density, fluid velocity, and
length, respectively. The pressure is rendered dimension
using the quantityr̃0ẽ0

2, the kinematic viscosity usingl̃ 0ẽ0

and the surface tension usingr̃0ẽ0
2 l̃ 0 . The relation ofẽ0 and

r̃0 to dimensional fluid constants, needed for practical ap
cations, can be extracted from the state equation, as det
in a forthcoming publication. The corresponding van d
Waals constants area50.0273 andb50.225, the interface
thickness isD53 lattice units, the surface tension iss
54.031024, and the grid size is 75375375. Periodic
boundary conditions have been employed in all principal
rections. The pressure differencePin2Pout across the inter-
face is calculated after a time period of about 25 000 ti
steps, which was required for the particle ensemble to re
equilibrium, and plotted against the droplet curvature in F
2 ~symbols!. The straight line corresponds to Laplace’s la
for the prescribed surface tension (s54.031024):

DP[Pin2Pout5
2s

R
. ~20!

FIG. 2. Laplace law test for a 3D droplet. The solid line repr
sents the Laplace law equation and the symbols indicate the s
lation results.
2-4
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Excellent agreement is observed between the prescribed
the calculated surface tension values.

A second validation test compares the liquid (Pl) and
vapor (Pg) pressure values in the equilibrated droplet expe
ment to the prediction of the Gibbs-Thomson equations,

FIG. 3. Comparison of the simulated differences of liquid a
vapor pressure in the equilibrated droplet case from the com
pressure across a flat interface~symbols! with the predictions of the
Gibbs-Thomson equations~solid lines!.

FIG. 4. Simulation of spinodal decomposition. Liquid fractio
0.12.
01670
nd
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Pg5P01S rg

r l2rg

2

RDs,

~21!

Pl5P01S r l

r l2rg

2

RDs,

whereP0 is the corresponding pressure for a flat interfa
The parameter values are the same as those in the Lap
law test, namely,n l5ng51.6731022, m51.831023, and
r l52, rg51. Periodic boundary conditions have been e
ployed around a 75375375 grid. The system reached equ
librium after approximately 25 000 time steps. The afo
mentioned pressure differences are plotted as symbols in
3 against the droplet curvature. The dashed lines repre
the theoretical values of the pressure differences, given
the Gibbs-Thomson equations for the prescribed surface
sion (s5431024). Again, a very good agreement betwe
the simulated and the theoretical pressure difference valu
observed.

Phase separation is simulated next. The working dom
is filled initially with vapor and liquid particles, randomly
distributed. Self-organization of particles is initiated by t
local density gradients through the pressure tensor@Eq. ~6!#
at the interface. The action of the surface tension results
single liquid body, the shape of which is a function of th
initial density of the particle ensemble. Three differe

n

FIG. 5. Simulation of spinodal decomposition. Liquid fractio
0.30.
2-5
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shapes can be attained for periodic domains of finite size
seen in Figs. 4–6. The parameter values in these simula
are n l5ng50.01, m50.001, r l52, and rg51, the corre-
sponding surface tension iss51.6631024, and the grid size
is 75375375. The results are consistent with the analyti
predictions of the minimal interfacial area for various valu
of the initial liquid fraction~Fig. 7!.

Figure 8 shows simulated snapshots of the coalescenc

FIG. 6. Simulation of spinodal decomposition. Liquid fractio
0.40.

FIG. 7. Dependence of the shape of the minimum surface
of a periodic liquid-vapor system on the liquid fraction.
01670
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of

two equally sized droplets. The parameter values aren l
5ng50.01,m52.531024, r l52, rg51, the corresponding
surface tension iss58.331025, and the grid size is 60
340340. If the droplets are brought sufficiently close
that their interface layers overlap, the density gradients
develop there trigger the formation of a liquid bridge b
tween the droplets, followed by a gradual coalescence in
composite droplet, which eventually acquires spherical sh

ea

FIG. 8. Simulated snapshots of the coalescence of two liq
droplets.

FIG. 9. Dependence of the coalescence time on the viscosity
two identical droplets brought into contact.
2-6
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owing to the surface tension. It should be noted that t
behavior of spontaneous coalescence is observed in the
of droplets of a volatile liquid. If the liquid is not volatile, th
behavior is quite different. The drops may need to
squeezed against each other for coalescence to take pla

The effect of the viscosity on the coalescence time,
fined as the time needed for the completion of the m
transport process and equilibration to a spherical compo
droplet, is shown in Fig. 9. The parameter values arem
52.531024, r l52, rg51, the corresponding surface te
sion is s58.331025, and the grid size is 60340340. In
this figure, a common value of the dynamic viscosity for t
two phases was used as abscissa, keepingng52n l . The coa-
lescence time follows a linear increase with viscosity, as
pected@19,20#. It is noteworthy that in order to improve th
accuracy of the calculation of the coalescence time, the si
lations involved an initial stage, that allowed equilibration
the two droplets, kept sufficiently away from each other. T
two droplets were then placed next to each other and allo
to coalesce.

In the presence of solid walls, two further boundary co
ditions must be defined, namely, the fluid velocity at the w

FIG. 10. Simulated snapshots of droplet generation from a c
cal orifice.NRe5726 at the liquid inlet.
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and the wettability or, equivalently, the contact angle at
liquid-vapor interface. The no-slip condition is used in th
work, implemented through the simple bounce-back ru
The wettability condition is imposed by prescribing a chem
cal potential value at the wall,mw(r ), that may be different
from the bulk fluid one, thus introducing locally a chemic
potential gradient that acts as an external force@2# at the
wall-fluid interface. Alternatively, one can prescribe a de
sity rw(r ) at the wall sites, which corresponds to a chemi
potential value through the equation

m~r,T!5kT ln
r

12br
1

kT

12br
22ar ~22!

for a van der Waals fluid@4#.
The aforementioned conditions are employed in the sim

lation of jet formation out of a conical orifice, as shown
Fig. 10. The parameter values aren l50.375, ng50.05, m
51.31023, r l510, andrg51, the corresponding surfac
tension is s51.5431022, and the grid size is 60360
3200. The diameter of the nozzle tip is 22 lattice units a

i- FIG. 11. Simulation of a sequential droplet generation from
conical orifice. First cycle:NRe5653; second cycle:NRe5581, at
the liquid inlet.
2-7
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the nozzle length is 44 lattice units. Initially, the interior
the nozzle is filled with liquid, whereas the vapor density
assigned to every other fluid site. The nozzle is liquid w
(rw5r l) except for a narrow ring at the nozzle tip, of leng
equal to 3 lattice units, which is vapor wet (rw5rg).

Periodic boundary conditions are used in faces paralle
the jet direction. At the downstream exit face, it is assum
that the fluid velocity in the jet direction is no further varie
with the distance form the nozzle (]zuz50). At the liquid
inlet, momentum is added to the boundary sites in the
direction, the magnitude of which can be treated as a par
eter, along with the viscosities, densities, and surface tens
This external force is applied for a finite-time interval and
subsequently discontinued for a fixed period of time. Th
the charge stage is repeated again, followed by a rest pe
and so on. Figure 10 shows simulated snapshots of suc
operation, the charge period lasting 600 time steps and
lowed by a rest stage through the end of the cycle. I
shorter rest stage is used~1900 time steps!, a second drople
can also be formed during the second cycle of operation
shown in Fig. 11. In this particular case, the magnitude of
force applied during the second cycle is reduced to 0.8
that employed in the first cycle, thus resulting in a sma
droplet, as expected.

IV. CONCLUSIONS

A 3D lattice Boltzmann model of nonideal fluids was d
veloped, and simulations of liquid-vapor equilibrium an
flow were performed. The model uses the van der Wa
theory of nonuniform fluids and the Cahn-Hilliard formul
tion, adopted by Swiftet al. @2# in their two-dimensional
model. The continuity and Navier-Stokes equations are fu
recovered, following a methodology similar to that describ
by the authors in a recent publication@1# that restored Gal-
ilean invariance in the 2D version of the model.
ys
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The 3D model was validated here under static conditio
using simulations of droplet equilibrium and comparing pre
sure estimates to the prescription of the Laplace law
Gibbs-Thomson equations. Prescription of the parameter
ues was made possible though the algorithm presented
Angelopouloset al. @4#. Spinodal decomposition and drople
coalescence were also simulated under a variety of param
values. It was found that the droplet coalescence time
creases linearly with the viscosity, in accord with simil
literature findings.

The wettability of solid walls in jet simulations was ad
justed through the prescription of a chemical potential pro
or, equivalently, a fluid density profile at the wall-fluid inte
face. Droplet formation from an orifice was reproduced us
both the momentum injection and the body force approach
Sequential droplet generation was also achieved and the
of ejected droplets was found to decrease with decrea
applied force, as expected. Because of the ability of
simulator to reproduce directly the entire process of drop
formation and breakup, detailed studies of the fundame
transport phenomena and underlying mechanisms can be
formed and a useful comparison with other numerical p
dictions can be made. Although the model presented her
ideally suited to treat two-phase systems with a mode
density ratio and relatively thick interface compared to t
characteristic curvature radius, future work could be direc
to relaxing these limitations and further widen the applic
bility of the method.
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