PHYSICAL REVIEW E 67, 016702 (2003
Three-dimensional lattice-Boltzmann model of van der Waals fluids
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A three-dimensional lattice-Boltzmann model is developed for the simulation of nonideal fluids under static
and flow conditions. The van der Waals formulation of quasilocal thermodynamics for nonuniform fluids is
used, and the interfacial stress tensor for nonideal fluids appears explicitly in the hydrodynamic equations. The
continuity and flow equations are fully recovered, and Galilean invariance is restored through appropriate
manipulations of the pressure tensor. Although applied here to {gsDattice, the methodology of Galilean
restoration can be easily modified for use with other three-dimensional lattices as well. The Laplace law and
Gibbs-Thomson equations are satisfied with excellent accuracy by the model, as demonstrated by droplet
equilibrium simulations. Spinodal decomposition and droplet coalescence simulations are also carried out,
revealing a direct proportionality of the characteristic times to the viscosity, as expected. A wettability adjust-
ment was made possible through the prescription of a chemical potential profile along the fluid-wall interface,
and used for the simulation of droplet formation from a conical orifice.
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[. INTRODUCTION of computational fluid dynamic§CFD) techniques have
been developed for the solution of the Navier-Stokes equa-
In a recent publicatiohl], the authors presented a lattice- tion in single and multiphase flow problems, the LB ap-
Boltzmann(LB) approach for the modeling of vapor-liquid proach holds strong promise as an alternative numerical pro-
equilibrium and the flow of a van der Waals fluid. The inter- cedure on the grounds of several distinct features. A great
facial phenomena of this nonideal system are captured usingdvantage of LB models is that they can easily simulate flow
the free-energy approach, originally introduced in the contextvith highly complicated solid or free boundaries. Especially
of LB schemes by Swift and co-workef8,3]. A methodol-  in multiphase flow cases, LB models do not need interface
ogy for the prescription of the fluid properties in the contexttracking algorithms—unlike conventional CFD codes—and
of such an approach was presented by Angelopoetad. the motion and evolution of deformable bodies, including
[4]. The thermodynamic aspects of this model follow the vancoalescence and breakup phenomena, are simulated in a
der Waals mean-field theory for nonuniform fluids6]. Al- straightforward fashion. A practical advantage is that LB
though the model was shown to be capable of simulatingoding is far easier than algorithms that solve the flow equa-
two-phase flow problemigt], the lack of Galilean invariance tion. Furthermore, LB models lend themselves naturally to
could lead to a reduced accuracy in the calculation of theparallel coding, thus taking advantage of the rapid progress
flow field, in transient or steady-state flow simulations. in the multiprocessor computer technology that is enjoyed
The main theoretical advance in our recent witkwas  nowadays. Although significant progress is still to be made
the restoration of Galilean invariance and the concomitantvith thermal LB models and with high density ratio for two-
recovery of the actual Navier-Stokes equation, using the twophase systems, currently available two-phase flow LB ap-
dimensional (2D) seven-speed model. Validation of the proaches can provide a very useful framework for the under-
model was implemented under static conditions, and its perstanding and simulation of flow phenomena that develop in
formance in droplet formation and flow simulations was in-classical fluid mechanics problems with and without solid
vestigated. A similar concept for Galilean invariance restoraboundarieqe.g., porous medjaA comprehensive review of
tion was used by Holdycht al.[7] in an older publication in LB methods focusing on two-phase flow modeling, accuracy,
the 2D nine-speed model. applications, and current restrictions is provided byziHa
In the present work, a 3D lattice-Boltzmann model of et al. [8].
nonideal fluids is developed and tested. The model is an Recently, some other two-phase LB models have been
extension of our previous 2D model to three dimensions, anéxtended to three dimensions using either the interacting po-
uses a cubic lattice with 15 velocity vectors per cell. The varntential approact9,10] or the free-energy approadtl,12|
der Waals theory for nonuniform fluids is used, and a rigor-proposed by Swifet al.[3]. The 3D model developed here is
ous method for restoring Galilean invariance is presentedised to simulate droplet equilibrium, droplet coalescence,
The practical need for this work arises form the large numbeand vapor-liquid flow including droplet motion and deforma-
of technological applications that involve interfacial phe-tion. This paper is organized as follows: Section Il presents a
nomena under static or flow conditions. Although a variety3D two-phase model, along with the necessary corrections
made for Galilean invariance restoration. In Sec. lll, the re-
sults of the application of the model to static and flow prob-
*Corresponding author. Email address: vbur@iceht.forth.gr lems are presented, and the significance of restoring Galilean
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D3Q15 (Jei=1, |en=3"?) roscopic equations of fluid motiofiL4,15. There are two
types of moving populations: populations of type Ki=(1)
move along the principal axe$e(;|=1,i=1,6) and popula-
tions of type 2 k=2) move along the eight diagonals
(lexi|=v3, i=7,14). Rest particle populations with zero
speed k=0) are also allowed|&y|=0).

The local densityp and velocityu are obtained from the
first two moments of the distribution function:

p=2> fii, PU:; gfy. (2

k,i

2 The equilibrium distribution functiorfi!is expanded as a
/ power series of the local velocity, up to second order, in
x  which additional nonlocal terms are included to allow the
prescription of the properties of a nonideal fl(ii:

—_— el fet= A+ By(&i- U) + Ci(eyi- u) %+ Dyu?

len=3"? + Gy i€+ O(U). (3
FIG. 1. Lattice geometry and unit paths assumed in2R© ;5 The coefficients are determined from the local conserva-
model. tion rules for mass and momentum,
invariance is demonstyated. The main conclusions of this pzz fe9, puzz e fel, (4)
work are summarized in Sec. IV. ki K,i

the constraints of isotropy and Galilean invariance, the re-
Il. LATTICE-BOLTZMANN TWO-PHASE MODEL quirement that the pressure tensor be independent of the ve-
IN THREE DIMENSIONS locity, and from the zero order momentum flux tensdf{)

A. Model development for nonideal fluids,

In this section the development of a three-dimensional no=s s fea_
lattice-Boltzmann model of nonideal fluids is presented. a4 & €kiabkipli —PaptpUalpg, ®)
Single-particle distribution functiond;, discrete in both
time and space, are used within a particle population enwhereP ,z is the pressure tensor.
semble. The particle populations reside only on the nodes ofhe pressure tensor for inhomogeneous fluids &
the lattice and move along a well-defined set of unit vectors
(e)), corresponding to the directioridicated by the sub- Pap(r)=P(1) 8,51 kVapVgp. (6)
script i) of the neighboring nodes. The ensemble evolves
according to the lattice-Boltzmann equation, simplified with
the use of the single time relaxation approach, introduced b
Bhatnagar, Gross, and Krogk3]:

Following the van der Waals quasi-thermodynamic theory
f nonuniform fluidg5] and the Cahn-Hilliard approadb],
he diagonal terms of the pressure tensor are related to the
free energy through

fri(X+eAt, t+At) — fii(x,t) = — %[fki(&t)_fﬁ?(&t)]-

P(r)= (ﬂ) W =py—kpV2p— = |Vp%  (7)
" D=r| 5, Po—kpVp—5|Vpl%

T

In Eq. (1) fgi(x,t) is the equilibrium distribution functions mgeézﬁgi's :EreOSQithuereegzégtzr:Ig;dsg?éc.:h 's connected to
is the single relaxation time which controls the rate of ap- '
proach to equilibriumAt is the time step, and is the posi- aY(p)

tion vector. Subscripk is used to classify the particle popu- Po=p—7 —— ¥(p), 8)
lation into subpopulations, according to their speégif), P

namely,k=0 for the rest particles anki>1 for the mobile  (r) is the free energy functional according to the square-
ones. The distribution functiofi;(x,t) represents the prob- gradient approximation,

ability of finding a particle at node and timet with velocity

e - In the present work the three-dimensional fcc lattice is 1 2

employed, and 14 distinct directions of particle propagation \I’([):j > MIVp(D)[*+¢lp(r)] dr, ©
at each time step are use{Q;5) (Fig. 1). This model has

the required underlying symmetry to restore the correct macand ¢(p(r)) is the local free-energy density of the fluid.
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The following velocity vectors are used with ti®;Q;5
model:

e,=0, fori=1...6

and
e=v3(+1,+1,+1) for i=7...14,

which satisfy the identities

z ekm:z €xiakig€kiy= 0,
I I

s bcﬁg 28,5, k=1 0
CeLiam—— S = , 1

e L

2 bc‘k1 A 250‘/375’ =

: ekiaekiﬁekiyekia—_D(D+2) aBys— 88upys, k=2,

AaﬂytS: 5&[3575+ 50(75’35"' 80(5537.

In the above, the greek subscripts represent the macroscopic

X, ¥, andz coordinates, and;=1, andc,=v3.

Using constraint$4) and(5) and Egs(10) the expansion

coefficients are determined as

1
7\ po—kpV?p— & K|V p|?

Ao=p— 3 =p—TAq,
» 1 2
Po—xpV7p— x|Vl
Alz 3 ’
p _KPVZP_EKWPF
A 0 67" A
2 24 -8’
Bo=0, B;=p/3, B,=pl24,
Cy=0, Cy;=pl2, C,=pl16,
Doz_p/3, Dlz_p/G, Dzz_p/48, (11)
k[ (ap\? [ap\? [dp\?
o s 2(_P) _(_P) _(_P> |
6 X ay 0z
k[ (ap\? _[dp\? [dp\?
6= (2] 4o %))
W6 IX ay Jz
k[ [ap\? [ap\? _[dp\?
cortl-(2-(3 (2]
6 X ay 0z
_K&p&p _K&p&p _Ké'pz?p
D272 9x gz’ Y 2 9x gy’ WE 2 ox dz”
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Gy Gy G
= 8xx, G2yy: 8yy GZzz: 822'
Gy G G,
Gny:%v szz:TxZ Gzyz Tyz

Application of the Chapman-Enskog approach to the lattice-
Boltzmann equation eventually results in the macroscopic
mass and momentum conservation equations:

(a) mass conservation equation:
J
P+ V-pu=0, (12)

(b) momentum conservation equation:

d
5 (PW)+V-(puu)

271
==VP+V|| —5—|o{Vut+(Vu)T}
1\/1 oP 27—1
+V T—E)(g—%)p(v-g) +V T)
1 0P - 1
X 1—§—p){l_JVP+(l_JVP) AV T35
1 oP 3
X 5—5 (u-Vp) |[+0O(u°). (13

The kinematic viscosityr) and the bulk viscosityx) are
given by the following expressions, respectively:

——3—

333, (14)

5 aP)

——y
p

The momentum conservation equat@y. (13)] contains
two density gradient-dependent terms on the right-hand side
that do not appear in the exact momentum equation. This
discrepancy is eliminated in Sec. I, and Galilean invariance
is restored. Another significant difference of E§j3) and the
macroscopic momentum equation is the form of the gradient
of the pressure tensor. According to its explicit expression
given in Eq.(6), it is easy to show that the pressure tensor
divergence is made up of two terms: the pressure tensor of
the nonideal fluid and the stress tensor that accounts for the
interfacial tension effects,

V-P=Vpy,—V-1¥, (15)

where

K
= ( kpV2p+ E|vp|2) 5-kVpVp. (16
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The use of the interfacial stress ten§BP in the momentum
equation[17] was also confirmed by Zou and H&8] using
kinetic theory arguments in their discrete Boltzmann equa-
tion approach.

)
o.

B. Restoration of Galilean invariance o

The appearance of the last two terms in the momentum
equation is physically incorrect and may be responsible for
the lack of Galilean invariance of the 3D LB model devel-
oped here. In order to recover the correct macroscopic mo-
mentum equation, these two terms must be eliminated. This

x10
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8

5

Laplace's law

=4.0x10*

g = 3.9 10°
0 T T T T T T

[}

prescr

can be achieved through a procedure that is similar to thai

developed by the authors in the 2D LB c44%é and consists

of the appropriate incorporation of the density gradient terms

into the pressure tensor. The pressure tensor can assume
following general form:

Paﬂ+ g(uﬁ’?ap+ uaaﬁp)

; fE?ekiaekiﬁ: P:yﬁ+puau/3:

+pUyUg. 17

+ fz uyﬂyp 5aﬁ
Y

0.00 0.15
2/R

FIG. 2. Laplace law test for a 3D droplet. The solid line repre-
Hedits the Laplace law equation and the symbols indicate the simu-
lation results.

’
14
Giaﬁ: Glaﬁ+ 7(“3(9(1p+ ua(gﬁp)v

!

’
v lap
Géa,B: GZaBJr 1_6(u,8‘9a/p+ ua‘?ﬂp) =

g

In the above equation, an index notation has been used.
The symbold, denotes spatial derivatives, and greek sub-

scripts represent the macroscopicy, and z coordinates.

Following algebraic manipulations, it can be shown that the

correct momentum equation is recovered if

=¢é=v'=p| 1 3(9P 18
(=g=v'=1[1-35-]. (18)
Substituting the equilibrium distribution expansidig.

(3)] and the pressure tensor fofeq. (6)] in Eq. (17), the
coefficients of the equilibrium distribution function for the
Galilean invariant model are obtain€drimed quantities

5
Al=A+ §V’; u,d,p,

Ai

5
Ay=Aos+ v Zy Uyd,p= g

! 35 ! !
Ag=Ao— 5 v > ud,p=p—TA],
Y

Bi=B:, B;=B.,,
Cj=C;, C}=C,,
(19
Dy=Do, Di=Di, D3=Dy,
v' 2
G:,laazGlaa—’_? zugﬁap_gz uy&yp),

Y

’ v’ 2 Gﬁll.aa

Ill. RESULTS AND DISCUSSION

A validation of the model through comparison of simula-
tion results to theoretical predictions is presented first. A lig-
uid droplet in equilibrium with its surrounding vapor is simu-
lated under static conditions and the pressure difference
across the interface is calculated for various droplet sizes.
The parameter valueg=v,=1.67x10 %, m=1.8x103,
andp;=2, pg=1 are prescribed in a self-consistent way ac-
cording to the algorithm proposed by Angelopouletsal.

[4], and are expressed in dimensionless fdfhattice Bolt-
zmann units’). The basic reference quantities are the density
of a unit cell,py, the speed of type-I particle®y, and the

lattice constant],, for the fluid density, fluid velocity, and
length, respectively. The pressure is rendered dimensionless

using the quantityps&3, the kinematic viscosity usinggg,

and the surface tension usi'ﬁg‘égTo. The relation o, and

‘po to dimensional fluid constants, needed for practical appli-
cations, can be extracted from the state equation, as detailed
in a forthcoming publication. The corresponding van der
Waals constants are=0.0273 andb=0.225, the interface
thickness isD=3 lattice units, the surface tension is
=4.0x10"%, and the grid size is 7875x75. Periodic
boundary conditions have been employed in all principal di-
rections. The pressure differen8,— P, across the inter-
face is calculated after a time period of about 25000 time
steps, which was required for the particle ensemble to reach
equilibrium, and plotted against the droplet curvature in Fig.
2 (symbolg. The straight line corresponds to Laplace’s law
for the prescribed surface tensiom=4.0X 10™4):

20

AP= Pin— Pout:?- (20
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1.5 -
x10*

P, Po

os4 A~

0.0 4= . T . . . .

2/R

FIG. 3. Comparison of the simulated differences of liquid and
vapor pressure in the equilibrated droplet case from the commor

pressure across a flat interfa@ymbols with the predictions of the
Gibbs-Thomson equatior{solid lines.

Excellent agreement is observed between the prescribed ar

the calculated surface tension values.
A second validation test compares the liqui ) and

vapor (Pg) pressure values in the equilibrated droplet experi-

ment to the prediction of the Gibbs-Thomson equations,

t=1000 t=4000

t=2000 t=7000

t=3000 t=20000

FIG. 4. Simulation of spinodal decomposition. Liquid fraction:
0.12.

PHYSICAL REVIEW E 67, 016702 (2003

t=10000

t=1000

t=2000 t=15000

t=5000

t=30000

FIG. 5. Simulation of spinodal decomposition. Liquid fraction:
0.30.

(21
P

2o,
PI~ Pg R)

where Py is the corresponding pressure for a flat interface.
The parameter values are the same as those in the Laplace
law test, namelyy = r4=1.67X10 2, m=1.8x10 3, and
p1=2, pg=1. Periodic boundary conditions have been em-
ployed around a 78 75X 75 grid. The system reached equi-
librium after approximately 25000 time steps. The afore-
mentioned pressure differences are plotted as symbols in Fig.
3 against the droplet curvature. The dashed lines represent
the theoretical values of the pressure differences, given by
the Gibbs-Thomson equations for the prescribed surface ten-
sion (0=4x10"%). Again, a very good agreement between
the simulated and the theoretical pressure difference values is
observed.

Phase separation is simulated next. The working domain
is filled initially with vapor and liquid particles, randomly
distributed. Self-organization of particles is initiated by the
local density gradients through the pressure tef&qr (6)]
at the interface. The action of the surface tension results in a
single liquid body, the shape of which is a function of the
initial density of the particle ensemble. Three different
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t=1000 i t=10000 t=250 t=5000

t=3000 t=25000 t=500 t=10 000

t=7000 t=30 000 t=1000 t=20 000

FIG. 6. Simulation of spinodal decomposition. Liquid fraction: J FIIGt 8. Simulated snapshots of the coalescence of two liquid
0.40. roplets.

shapes can be attained for periodic domains of finite size, d¥0 equally sized droplets. The parameter values gre
seen in Figs. 4—6. The parameter values in these simulatiors »4=0.01,m=2.5x10"*, p;=2, p,=1, the corresponding
are v;=14=0.01, m=0.001, p=2, andp,=1, the corre- surface tension isr=8.3x107°, and the grid size is 60
sponding surface tensionds=1.66x 104, and the grid size X40x40. If the droplets are brought sufficiently close so
is 75X 75X 75. The results are consistent with the analyticalthat their interface layers overlap, the density gradients that
predictions of the minimal interfacial area for various valuesdevelop there trigger the formation of a liquid bridge be-
of the initial liquid fraction(Fig. 7). tween the droplets, followed by a gradual coalescence into a
Figure 8 shows simulated snapshots of the coalescence eemposite droplet, which eventually acquires spherical shape

1.2x10°

. S
cylmder 1.0x10
sphere

8.0x10"

6.0x10"

4.0x10* -

Coalescence time

e Simulation results
—————- Linear fit

Dimensionless surface area

2.0x10*

T . r . 0.0 T T . T . T . r . :
m™ 04 0.6 08 1.0 0.00 0.02 0.04 0.06 0.08 0.10
liquid mass fraction Viscosity (1,9)

N RSP

. T
4'miBlg o

FIG. 7. Dependence of the shape of the minimum surface area FIG. 9. Dependence of the coalescence time on the viscosity for
of a periodic liquid-vapor system on the liquid fraction. two identical droplets brought into contact.
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t=1000 t=2 000

t=2 000 t=4500

t=3 000 t=5000

t=5000 t=10 000

FIG. 10. Simulated snapshots of droplet generation from a coni- FIG. 11. Simulation of a sequential droplet generation from a
cal orifice.Ng=726 at the liquid inlet. conical orifice. First cycleNg.=653; second cycleNg.=581, at
the liquid inlet.
owing to the surface tension. It should be noted that this
behavior of spontaneous coalescence is observed in the caded the wettability or, equivalently, the contact angle at the
of droplets of a volatile liquid. If the liquid is not volatile, the liquid-vapor interface. The no-slip condition is used in this
behavior is quite different. The drops may need to bework, implemented through the simple bounce-back rule.
squeezed against each other for coalescence to take placel'he wettability condition is imposed by prescribing a chemi-
The effect of the viscosity on the coalescence time, decal potential value at the wall,(r), that may be different
fined as the time needed for the completion of the mas§om the bulk fluid one, thus introducing locally a chemical
transport process and equilibration to a spherical compositgotential gradient that acts as an external fozgat the
droplet, is shown in Fig. 9. The parameter values @are wall-fluid interface. Alternatively, one can prescribe a den-
=2.5x10"%, p=2, py=1, the corresponding surface ten- sity p,,(r) at the wall sites, which corresponds to a chemical
sion is =8.3x107°, and the grid size is 6040x40. In  potential value through the equation
this figure, a common value of the dynamic viscosity for the T
two phases was used as abscissa, keepjr2v, . The coa- _ P -~
lescence time follows a linear increas?evith viscosity, as ex- #(p.T)=KTln 1-bp * 1-bp 2ap (22
pected19,20. It is noteworthy that in order to improve the
accuracy of the calculation of the coalescence time, the simdor a van der Waals fluidi4].
lations involved an initial stage, that allowed equilibration of ~ The aforementioned conditions are employed in the simu-
the two droplets, kept sufficiently away from each other. Thdation of jet formation out of a conical orifice, as shown in
two droplets were then placed next to each other and alloweflig. 10. The parameter values avg=0.375, v,=0.05, m
to coalesce. =1.x10"3, p,=10, andpy=1, the corresponding surface
In the presence of solid walls, two further boundary con-tension is o=1.54x10 2, and the grid size is 6060
ditions must be defined, namely, the fluid velocity at the wallX 200. The diameter of the nozzle tip is 22 lattice units and
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the nozzle length is 44 lattice units. Initially, the interior of  The 3D model was validated here under static conditions
the nozzle is filled with liquid, whereas the vapor density isusing simulations of droplet equilibrium and comparing pres-
assigned to every other fluid site. The nozzle is liquid wetsure estimates to the prescription of the Laplace law and
(pw=p)) except for a narrow ring at the nozzle tip, of length Gibbs-Thomson equations. Prescription of the parameter val-
equal to 3 lattice units, which is vapor wei{= pg). ues was made possible though the algorithm presented by
Periodic boundary conditions are used in faces parallel té&\ngelopouloset al.[4]. Spinodal decomposition and droplet
the jet direction. At the downstream exit face, it is assumed-oalescence were also simulated under a variety of parameter
that the fluid velocity in the jet direction is no further varied values. It was found that the droplet coalescence time in-
with the distance form the nozzle)u,=0). At the liquid creases linearly with the viscosity, in accord with similar
inlet, momentum is added to the boundary sites in the jeliterature findings.
direction, the magnitude of which can be treated as a param- The wettability of solid walls in jet simulations was ad-
eter, along with the viscosities, densities, and surface tensiojusted through the prescription of a chemical potential profile
This external force is applied for a finite-time interval and isor, equivalently, a fluid density profile at the wall-fluid inter-
subsequently discontinued for a fixed period of time. Therface. Droplet formation from an orifice was reproduced using
the charge stage is repeated again, followed by a rest periotipth the momentum injection and the body force approaches.
and so on. Figure 10 shows simulated snapshots of such &@equential droplet generation was also achieved and the size
operation, the charge period lasting 600 time steps and folef ejected droplets was found to decrease with decreasing
lowed by a rest stage through the end of the cycle. If aapplied force, as expected. Because of the ability of the
shorter rest stage is us€t900 time steps a second droplet simulator to reproduce directly the entire process of droplet
can also be formed during the second cycle of operation, a®rmation and breakup, detailed studies of the fundamental
shown in Fig. 11. In this particular case, the magnitude of théransport phenomena and underlying mechanisms can be per-
force applied during the second cycle is reduced to 0.8 oformed and a useful comparison with other numerical pre-
that employed in the first cycle, thus resulting in a smallerdictions can be made. Although the model presented here is

droplet, as expected. ideally suited to treat two-phase systems with a moderate
density ratio and relatively thick interface compared to the
IV. CONCLUSIONS characteristic curvature radius, future work could be directed

) ] ) to relaxing these limitations and further widen the applica-
A 3D lattice Boltzmann model of nonideal fluids was de- pjlity of the method.

veloped, and simulations of liquid-vapor equilibrium and

flow were performed. The model uses the van der Waals

theory of nonuniform.fluids and .the Cghn-HiIIi.ard fo_rmula- ACKNOWLEDGMENTS
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